
8 The Delphi Magazine Issue 36

Mix-In It Up In Delphi
by David Baer

Issue 32 of The Delphi Magazine
presented an article by Marco

Cantù that explored the use of
Delphi interfaces to effect multiple
inheritance. Although the primary
motivation of Inprise’s provision of
interfaces was to open Delphi up to
work with Microsoft’s Component
Object Model (COM), Marco dem-
onstrated a very useful alternative
application of this feature.

We’ll explore the topic further in
this article. We’ll look at grafting
interfaces on to existing VCL com-
ponents, and we’ll see just how far
away from COM we actually
remove ourselves in the process.

Whereabouts IUnknown
Let’s begin with a brief review of
how we’ve arrived here and why
this technology can be important
outside the context of COM. C++, of
course, has long supported multi-
ple inheritance (MI) in its object
model. But even some of the most
zealous of C++ advocates have cau-
tioned that the use of MI is gener-
ally a bad thing, a probable ticket to
code maintenance hell.

However, one form of MI has
been generally blessed. If all but
the principal base class in an MI
inheritance structure is com-
pletely abstract (ie contains no
data and has only methods defined
as the equivalent of Delphi
abstract methods), the benefits of
the considerable flexibility and
power of MI are provided, but the
pitfalls are avoided. This style of MI
coding is often referred to as using
‘mix-in’ classes.

One of the goals of the designers
of the Java language was to invent a
medium of expression that had
most of the power of C++, but
which jettisoned those problem-
atic language elements that ren-
dered C++ code obtuse and error
prone. To that end, mix-in class
capability was provided in the
form of (you guessed it) interfaces.

Meanwhile COM was evolving
(cynics might say mutating) at

Microsoft. In COM, objects are only
accessed via interfaces. COM inter-
faces play much the same role as
they do in Java. However, in COM,
the rules for interacting with
objects are quite complex and very
different from object interaction in
conventional OO languages. Pro-
gramming to the COM specification
at the actual API level is an extraor-
dinarily challenging activity.

Although much has been made
of the inadequacies of COM as an
object model, it is nevertheless an
extremely important and widely
used technology. Inprise provided
robust support for COM in Delphi 3
and they are to be congratulated
on their solution, which manages
to make COM integration almost
painless, a rather incredible feat of
software engineering. The Delphi
approach involves the provision of
compile-time services which hide
many of the tedious details of COM
interaction, and extensive runtime
support from a number of VCL
classes. Delphi 3 also defined a new
syntactic construct called the
interface to support Delphi/COM
interaction, and that syntax is a
very natural addition to the exist-
ing language. Although Delphi 3
interfaces are decidedly COM-
centric, an interesting question
arises as to how useful they might
be outside the world of COM.

Don’t Count On It
All interfaces in both Delphi and
COM derive from a single standard
ancestor interface, IUnknown. Even
if we wish to avoid COM in our pur-
suit of mix-in capabilities, we can’t
avoid IUnknown. Delphi dictates
that our interfaces must descend
from it. When a class implements
an interface, then it (or one of its
ancestor classes) must provide an
implementation of the IUnknown
methods.

IUnknown defines three methods,
two of which, _AddRef and _Release,
concern themselves with referenc-
ing counting (we will get to the

third one in a bit). COM classes
always sport multiple interfaces,
sometimes a fairly imposing
number of them. COM objects are
required to count the number of
outstanding references to inter-
faces. As references to interfaces
are obtained the count increments,
as they are abandoned the count
decrements. When it hits zero, the
object may be destroyed.

However, programming COM at
the low API level involves a good
deal of very picky placement of
_AddRef and _Release calls for
things to work properly. This is
where the Delphi compiler gets
into the act. The compiler auto-
matically generates calls to the
counting routines as appropriate.
When interfaces go out of scope,
for example, reference counts are
decremented. Referencing count-
ing is a pervasive technique found
in many places beside COM. Those
familiar with the reference count-
ing mechanisms of Delphi long
strings will already understand
how this game is played.

The Delphi VCL supplies a base
class called TInterfacedObject (in
the System unit) that inherits from
TObject and includes the IUnknown
interface. TInterfacedObject is of
little use itself, but it serves as a
base class for increasingly com-
plex COM classes. Recall that inter-
faces include only the method
definitions, but implement no
code. Thus, TInterfacedObject
must supply the implementation of
the IUnknown methods, and it is
instructive to examine these which
are shown in Listing 1. As this has a
fundamental placement in the
class hierarchy, we can assume
that it’s a fairly ‘boilerplate’ imple-
mentation. This is also the first
dilemma we encounter in trying to
use interfaces for non-COM
purposes.

_AddRef couldn’t be much sim-
pler. It increments FRefCount,
which is the private variable TIn-
terfacedObject object’s reference

10 The Delphi Magazine Issue 36

function TInterfacedObject._AddRef: Integer;
begin
Inc(FRefCount);
Result := FRefCount;

end;
function TInterfacedObject._Release: Integer;
begin
Dec(FRefCount);
if FRefCount = 0 then begin
Destroy;
Result := 0;
Exit;

end;
Result := FRefCount;

end;

➤ Listing 1

count for interfaces. But observe
the logic in _Release. It decrements
FRefCount and, when the value goes
to zero, the object is destroyed.
This may be perfectly fine if we’re
using COM object creation meth-
odology, but if we instead wish to
create our objects in the standard
Delphi way, we’ve got a problem.

Consider the innocuous code in
Listing 2. A problem arises because
Delphi is observing that a refer-
ence count increment is needed
when IntRef is assigned a value

Type
IAnInterface = interface(IUnknown)
procedure AnInterfaceMethod;

end;
TMyClass = class(TAClass, IAnInterface)
...

var
SomeObject: TMyClass;

procedure TMyForm.FormShow(Sender: TObject);
var
IntRef: IAnInterface;

begin
SomeObject := TMyClass.Create;
IntRef := SomeObject;
IntRef.AnInterfaceMethod;

end;

➤ Listing 2

function TMyObject._AddRef: Integer;
begin
Result := 0;

end;
function TMyObject._Release: Integer;
begin
Result := 0;

end;
function TMyObject.QueryInterface const IID: TGUID; out Obj): Integer;
begin
Result := 0;

end;

➤ Listing 3

from SomeObject. Upon exit of the
routine, IntRef goes out of scope
and the compiler again helpfully
generates an implicit call to
_Release. Whoops! The code
doesn’t make it appear that we’ve
freed our newly created SomeOb-
ject, but that is just what’s
happened. So here is our first
departure from the boilerplate
code.

We have two choices. The first is
to fool the reference counting
mechanism by calling _AddRef right

in our constructor which allows us
to always have a reference count of
at least one. The second is to just
ignore the whole business (there’s
no COM here, we don’t need no
stinkin’ reference counts). This is a
slightly cleaner solution, as the
code in Listing 3 demonstrates.

GUID Riddance!
Now we get to the third method of
IUnknown, QueryInterface. Unfortu-
nately, there is no easy way to dis-
cuss QueryInterface without
getting into some pretty complex
aspects of COM. The good news is
that we don’t necessarily need to
explain it. Once again, Delphi
allows us to ignore the whole thing,
if we are content to sacrifice a dash
of polymorphic capability.

The COM landscape is scattered
with unreadable names which look
like this:

[‘{667337A0-D3C5-11D1-8914-
4746535402305}’]

These are known as GUIDs (Glob-
ally Unique Identifiers), which are
claimed to be statistically unique
across space and time (and as
Julian Bucknall hasn’t chosen to
challenge this bold assertion, I’m
certainly not about to). Every thing
that can be named in COM has its
own GUID, although more specific
designations are usually used
(CLSIDs being Class Identifiers and
IIDs being Interface Identifiers, for
example).

So, it can be no surprise that
COM interfaces need identifiers,
and the Delphi interface declara-
tion syntax accommodates this.
Listing 4 presents Delphi’s own
declaration of IUnknown. This is
where things get a bit puzzling. The
Delphi documentation clearly
shows that the interface identifier
is optional. But it is mute on the
rules and consequences of not
including one. Clearly, we can
expect that such an omission
would not be welcomed in the COM
world. But for what do we need a
GUID in our non-COM quest?

Before we get to that answer, we
need to examine another aspect of
the Delphi language implementa-
tion of interfaces. First of all, unlike

IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

➤ Listing 4

12 The Delphi Magazine Issue 36

the invocation of mix-in class meth-
ods in C++, which is done via an
object reference, Delphi interface
methods may only be executed
using an interface reference. A
similar requirement exists in Java,
by the way.

So, how do we get an interface
reference? Rather simply, it turns
out. One may declare interface
references just as one declares
object references. Assigning an
object reference to this interface
reference will provide the appro-
priate value (assuming that the
types are compatible). This type
compatibility is known at compile-
time, and the compiler enforces it.
Listing 5 illustrates this and some
of the following points.

In COM, object clients never deal
with direct object references, only
interface references. The COM
contract states that any interface
of an object must be obtainable
from any other interface sup-
ported by the object. That is the
job of QueryInterface: to provide
this service.

In Delphi, we need not call Query-
Interface, however. This is where
the compiler again offers assis-
tance. Delphi utilizes the as opera-
tor for this purpose (again, see
Listing 5). Delphi translates I2 as
I1 into a call to QueryInterface. In
this case, the type compatibility is
not known at compile-time. A type
mismatch results in a runtime
exception. But what happens if
you’ve not supplied a GUID in your
interface definition? The compiler
produces the following not-so-
helpful diagnostic: Operator not
applicable to this operand type. It
turns out that Delphi will allow use
of the as operator only when GUIDs
are specified. Mystery solved!

So, the final thing to attend to is
the implementation of QueryInter-
face. If we omit the GUIDs in our
interface declaration, the imple-
mentation can be anything, since
the compiler won’t allow as opera-
tors on the interfaces. As a result,
implicit calls to QueryInterface will
never be made. Listing 3 shows a
minimal implementation. A slightly
better one might include raising an
exception, just in case another
developer later decides to add

IInterface1 = interface(IUnknown)
['{7FB79D60-D6CB-11D1-8914-444553540000}']
procedure Method1;

end;
IInterface2 = interface(IUnknown)
['{7FB79D61-D6CB-11D1-8914-444553540000}']
procedure Method2;

end;
TSomeClass = class(TObject, IInterface1, IInterface2)
public
procedure SomeMethod;
...

var
SC: TSomeClass;
I1: IInterface1;
I2: IInterface2;

begin
SC := TSomeClass.Create;
SC.Method1; // compile error, object can't execute

// interface method
I1 := SC; // get IInterface1 reference from object
I2 := SC; // get IInterface2 reference from object
SC.SomeMethod; // no problem
I1.Method1; // no problem
I2.Method2; // no problem
I2 := I1 as I2; // OK as long as GUIDs are present

// otherwise compile error
...

➤ Listing 5

GUIDs, but isn’t aware of the
original intention.

Naughty, Naughty
So, we’ve seen what the GUID buys
us: access to the as operator on
interfaces. Lack of this may be
unacceptable in some circum-
stances, but will prove no great
deficiency in many others. But
there’s one more thing we can do
here, and it’s something that would
be no less than a criminal act in
COM. We can have any of our inter-
faces produce an object reference.
COM objects only reveal them-
selves through interfaces, but in a
Delphi-only context, we needn’t be
bound by this restriction. Listing 6
shows an implementation of this
technique.

Interfacing Reality
If the discussion thus far has failed
to convince you that interfaces are
a marvelous addition to the lan-
guage, well, I’m not surprised. This
has been a lot of rather dry
explanation. But be patient. It’s
time to look at this capability in a

IKnowsObject = interface(IUnknown)
function ObjectOfInterface: TObject;

end;
TSomeClass = class(TObject, IKnowsObject)
...

function TSomeClass.ObjectOfInterface: TObject;
begin
Result := Self;

end;

➤ Listing 6

somewhat realistic setting. Figure
1 shows the single form used for
the demonstration project, which
can found on this issue’s compan-
ion disk. If you wish to take if for a
test drive, there is nothing to
install on the component palette.
All items are classes, and you may
compile and run the project with
little ado.

Imagine that Object Pascal had
some form of MI from its inception.
Do you think the engineers devis-
ing the technology for data-aware
components would have consid-
ered it? I confess I haven’t done the
analysis to suggest that use of
interfaces would be superior to the
solution we’ve grown to know and
appreciate. But I believe that the
alternative would have at least
merited serious consideration in
the design stage. To that end, the
sample code used to demonstrate
these concepts is a modest
analogue to data sources and
data-aware components.

For the server (data source), I’ve
defined the class TStringArray. It’s
much like a TStringList except that

August 1998 The Delphi Magazine 13

➤ Figure 1

it has, at any given time, a fixed
dimension it maintains, a current
row index and it supports an Assign
function compatible with any
TStrings class. But most signifi-
cantly, it serves components
which implement the IStringAr-
rayClient interface. For clients,
I’ve defined classes based on three
stock Delphi components: TEdit,
TListBox and TTrackBar, each of
which implement the IStringAr-
rayClient interface. Each also has a
property, StringArray, used to
specify the server.

The TStringArray is somewhat
like a data source in that it can
serve a number of diverse clients
at one time. The beauty of using
interfaces to effect this solution is
that we may add additional client
types at any time without either
TStringArray or other existing
client classes needing to be modi-
fied. Listing 7 presents the declara-
tion of TStringArray. TStringArray
has three properties, none of them
too mysterious. The Count prop-
erty is read/write and specifies the
number of elements. Increasing
Count causes additional rows with
empty string values to be added,
decreasing it discards any strings
beyond the upper bound. The Cur-
rent read/write property is the cur-
rent ‘row’ index. If Count is zero,
Current will be -1, otherwise it will
always be between 0 and Count -1.
Finally, Strings, predictably the
default read/write property, gives
access to the contents of the array.

TStringArray is derived from
TPersistant, not because it is
intended to be streamable, but for
another important reason (which
is off subject, but well worth taking
a short detour to mention). By
using TPersistant as the base
class, we have the Assign/AssignTo
turnaround of TPersistant at our
disposal. This permits TStringAr-
ray and TStringsobjects to interact
with via the Assign method. Space
does not permit a full explanation,
but many of you will be able to
discover what’s going on by
examining the code in the short
TPersistant class definition (in the
Classes unit). For now, let me just

offer the opinion that there has
never been a more compelling, yet
economical, demonstration of the
power of polymorphism. For my
money, this is as close to poetry as
program code can get.

For further information, I heart-
ily recommend reading Delphi
Component Design by Danny
Thorpe of Inprise.

But back to the business at hand.
It’s time to discuss client interac-
tion responsibilities of TStringAr-
ray. Client controls may be totally
passive, simply reflecting content
or position changes in the server.
However, they may also be agents
of change to either of those things.
For example, a read-only edit con-
trol client attached to a string
array will simply present the con-
tents of the current row (or no text,
if Count is 0). But if the edit control
is not read-only, then changes in its
text must be communicated to the
string array. When a client is an
agent of change, it’s the responsi-
bility of that client to appropriately
communicate modifications to the
server. When this occurs, all of the
other clients must be notified that
something has happened as well.
This becomes the responsibility of
the server.

TSAChangeType = (sacSingleItemChange,
sacCurrentChange,
sacMajorChange,
sacClosingDown);

IKnowsObject = interface(IUnknown)
function ObjectOfInterface: TObject;

end;
ISt*ringArrayClient = interface(IKnowsObject)
procedure StringArrayChange(ChangeType: TSAChangeType);

end;
TStringArray = class(TPersistent)
private
FCurrent: Integer;
ClientList: TList;
StrList: TStringList;
UpdateCount: Integer;

private
function GetCount: Integer;
function Get(Index: Integer): String;
procedure NotifyClients(ChangeType: TSAChangeType);
procedure Put(Index: Integer; const Value: String);
procedure SetCount(Value: Integer);
procedure SetCurrent(Index: Integer);

public
constructor Create;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
procedure AssignTo(Dest: TPersistent); override;
procedure BeginUpdate;
procedure Clear;
procedure EndUpdate;
procedure RegisterClient(C: IStringArrayClient);
procedure UnregisterClient(C: IStringArrayClient);

public
property Current: Integer read FCurrent write SetCurrent;
property Count: Integer read GetCount write SetCount;
property Strings[Index: Integer]: String read Get
write Put; default;

end;

➤ Listing 7

14 The Delphi Magazine Issue 36

Our server, being a generally
helpful one, gives clients a bit more
information than ‘something’s dif-
ferent’. There are three state
changes communicated, not all of
which will be of interest to all cli-
ents: Current has changed, the con-
tents of one element has changed,
or something major has happened.
Our track bar client, for example,
will have no interest in the fact that
the contents of an element of the
array have changed. It’s interested
in the number of elements and the

procedure TStringArray.Assign(Source: TPersistent);
var
I: Integer;
Max: Integer;

begin
if (Source is TStrings) or
(Source is TStringArray) then begin
BeginUpdate;
try
Max := TStrings(Source).Count;
if StrList.Count < Max then
Max := StrList.Count;

for I := 0 to (Max - 1) do
if Source is TStrings then
StrList[I] := TStrings(Source)[I]

else
StrList[I] := TStringArray(Source)[I];

for I := Max to (StrList.Count - 1) do
StrList[I] := '';

finally
EndUpdate; // which calls NotifyClients

end;
end else
inherited Assign(Source);

end;
procedure TStringArray.AssignTo(Dest: TPersistent);
begin
if Dest is TStrings then begin
Dest.Assign(StrList);
Exit;

end;
inherited AssignTo(Dest);

end;
procedure TStringArray.BeginUpdate;
begin
Inc(UpdateCount);

end;
procedure TStringArray.Clear;
begin
if StrList.Count <> 0 then begin
StrList.Clear;
FCurrent := -1;
NotifyClients(sacMajorChange);

end;
end;
constructor TStringArray.Create;
begin
inherited Create;
ClientList := TList.Create;
StrList := TStringList.Create;
FCurrent := -1;

end;
destructor TStringArray.Destroy;
var
I: Integer;

begin
for I := ClientList.Count - 1 downto 0 do
IStringArrayClient(
ClientList[I]).StringArrayChange(sacClosingDown);

ClientList.Free;
StrList.Free;
inherited Destroy;

end;
procedure TStringArray.EndUpdate;
begin
Dec(UpdateCount);
if UpdateCount = 0 then
NotifyClients(sacMajorChange);

end;
function TStringArray.GetCount: Integer;
begin

Result := StrList.Count;
end;
function TStringArray.Get(Index: Integer): String;
begin
Result := StrList[Index];

end;
procedure TStringArray.NotifyClients(ChangeType:
TSAChangeType);

var I : Integer;
begin
if UpdateCount = 0 then
for I := 0 to (ClientList.Count - 1) do
IStringArrayClient(
ClientList[I]).StringArrayChange(ChangeType);

end;
procedure TStringArray.Put(Index: Integer;
const Value: String);

begin
if StrList[Index] <> Value then begin
StrList[Index] := Value;
NotifyClients(sacSingleItemChange);

end;
end;
procedure TStringArray.RegisterClient(
C : IStringArrayClient);

begin
{ ShowMessage('Connecting ' +
C.ObjectOfInterface.ClassName); }

ClientList.Add(Pointer(C));
C.StringArrayChange(sacMajorChange);

end;
procedure TStringArray.SetCount(Value: Integer);
var
I: Integer;

begin
if Value <> StrList.Count then begin
if Value < StrList.Count then
for I := (StrList.Count - 1) downto Value do
StrList.Delete(I)

else
while (StrList.Count < Value) do
StrList.Add('');

if (FCurrent = -1) and (Value > 0) then
FCurrent := 0

else if (FCurrent <> -1) and (Value = 0) then
FCurrent := -1

else if FCurrent > (Value - 1) then
FCurrent := Value - 1;

NotifyClients(sacMajorChange);
end;

end;
procedure TStringArray.SetCurrent(Index: Integer);
begin
if Index <> FCurrent then begin
if Index < 0 then
Index := 0

else if Index > (StrList.Count - 1) then
Index := StrList.Count - 1;

FCurrent := Index;
NotifyClients(sacCurrentChange);

end;
end;
procedure TStringArray.UnregisterClient(
C: IStringArrayClient);

begin
{ ShowMessage('Disconnecting ' +
C.ObjectOfInterface.ClassName); }

ClientList.Remove(Pointer(C));
end;

current element index. All clients
will be interested in a major
change, which happens when mul-
tiple element values are changed
or when Count changes. Finally, we
add one additional state change:
the server’s shutting down.

Service With A Smile
Let’s look at how the state changes
are communicated.

It’s really quite simple. Clients
must implement the IStringArray-
Client interface, which has but one
method: StringArrayChange. Its
sole parameter is the type of

change TStringArrayChangeType.
But before we focus on state
changes, let’s briefly examine how
clients connect and disconnect.

The implementation of TStrin-
gArray is presented in Listing 8.
Two methods, RegisterClient and
UnregisterClient, take care of
client connection/disconnection.
Both methods have a single
parameter of type IStringArray-
Client, which is an interface refer-
ence. These simply add or delete
the interface reference from an
internal TList. Note that the
parameter variables need to be

➤ Listing 8

16 The Delphi Magazine Issue 36

cast as Pointer. Although Delphi
will allow an object reference to be
a parameter to a TList.Add, an
interface reference is disallowed.
But the cast removes the compil-
er’s objection, and everything
works satisfactorily.

It’s expected that the clients
themselves will call these methods
when they are ready to connect or
disconnect (we’ll see how later).
But the server can do one thing
helpful to a newly connected
client. As its first service, it can
invoke its interface’s method
StringArrayChange with a change
type of sacMajorChange. This lets
the client react in its normal fash-
ion to a major change incident.

Other incidents that require a
change notification to be sent are a
change in any of the three proper-
ties. For example, setting a Strings
value triggers execution of Strin-
gArrayChangewith change type sac-
SingleItemChange. This can be seen
in method Put. The notification is
done by calling NotifyClients,
which does so for each client in the
list. When Count changes, then this
warrants a NotifyClients with
change type sacMajorChange. A new
value assigned to Current gets the
clients a sacCurrentChange notifica-
tion. Finally, if the server is about
to destruct, it notifies any clients of
that fact, so that they may
disconnect.

One last detail: notice the Begin-
Update and EndUpdate methods.
These serve the same function as
like-named methods in a number of
other VCL classes. They allow noti-
fications to clients to be sus-
pended during a period of
upheaval. A listbox client does not
need to be informed of every
element change during a Clear
operation, but only at the end. Like
other Begin/EndUpdates, these are
nestable. Naturally, when an
EndUpdate returns the nesting level
to 0, the server appropriately
issues a notification with type
sacMajorChange.

The Client
We’ll undertake a thorough exami-
nation of only one of the three
client classes. The TSAListBox class
gets involved in everything except

a value change to a string array ele-
ment, so it provides us with a serv-
iceable specimen to dissect. Study
of the other two client classes is
left as an exercise to the interested
reader. First, let’s dispense with
the code common to all three (and
to any additional client class types
added later). These are the imple-
mentations of the three methods of
IUnknown, the single method of
IKnowsObject, and the method
that’s involved in connecting and
disconnecting to the string array.
Listing 9 presents these methods.

As promised earlier, _AddRef,
_Release and QueryInterface are
minimal placeholders. However,
forgetting to include them is a mis-
take. But (you say) how could one
forget? Surely the compiler will
notice their absence and flag the
omission. It certainly would do so
except for an easily overlooked
detail. TComponent implements
these methods, in spite of the fact
that neither TComponent nor its two
ancestors includes the IUnknown
interface in their declarations.
They are there to assist Delphi in
working its COM integration magic,
but they are definitely not what we
want here. We must hide them with
our own implementations, or nasty
things will happen at runtime. Also,
ObjectOfInterface is like the exam-
ple shown earlier. The demonstra-
tion code does not actually use the
method except in several blocked

procedure TSAListBox.SetStringArray(SA: TStringArray);
begin
if SA <> FStringArray then begin
if SA = nil then begin
FStringArray.UnregisterClient(Self);
FStringArray := nil;
Clear;

end else begin
if FStringArray <> nil then
FStringArray.UnregisterClient(Self);

FStringArray := SA;
FStringArray.RegisterClient(Self);

end;
end;

end;
function TSAListBox._AddRef: Integer;
begin
Result := 0;

end;
function TSAListBox._Release: Integer;
begin
Result := 0;

end;
function TSAListBox.QueryInterface(const IID: TGUID; out Obj):
Integer;

begin
Result := 0;

end;
function TSAListBox.ObjectOfInterface: TObject;
begin
Result := Self;

end;

lines of code which may be uncom-
mented by the truly curious (or
skeptical).

The final common method is
SetStringArray, which is the write
method for the class’s StringArray
property. Most of the code here
will be common to all string array
clients. But the processing
required when the property is set
to nil will vary according to what’s
appropriate for the control type.
For the listbox, clearing the con-
tents is all that is needed. The
remainder of the code is involved
in calling RegisterClient and
UnregisterClient on the string
array.

Now we come to the StringAr-
rayChange method. This needs to
reflect the particular qualities of
the client. In the case of the listbox,
we need to update a single line for
notification type sacSingleItem-
Change. For a sacCurrentChange, we
need to set the ItemIndexproperty.
For sacMajorChange, we just reload
the contents with an Assign of the
StringArray, and then set the
ItemIndex. For sacClosingDown, we
set the control’s own StringArray
property to Nil, and that will take
care of the disconnect details.

The client listbox must do one
more thing. When a new item is
selected, the string array must be
notified that there is a new Current

➤ Listing 9

August 1998 The Delphi Magazine 17

value. This is done in a message
handler for CN_COMMAND.

Wrapping Up
That’s about it. The three client
classes would require a bit of
improvement if they were to be
used in a production setting. The
track bar, for example, could use
some refinement in adjusting the
number of ticks for larger numbers
of string array elements. Certainly,
all three classes would need to be
upgraded to full component
status. But the basics are all there,
and I hope you’ve been able to
appreciate the possibilities.

Interfaces are powerful and ele-
gant, and they make a marvelous
addition to Delphi’s language. I, for
one, wish Inprise would make
them a bit more independent of
COM. It would be wonderful if
there were a way to specify that an
interface is intended as Delphi-
only (or perhaps letting the
absence of a GUID serve this pur-
pose). Such interfaces could
descend from an empty interface,
and there would be no need to pro-

vide dummy implementations of
_AddRef et alia, In fact, the compiler
would not even generate implicit
calls to these. Additionally, the
compiler could handle the as
operator, since it has all the infor-
mation needed to compile such
casts into native code, and throw
the isoperator back into the works
as well. Hmmm.

Dear Santa...

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco, CA. Having been
writing software for over 30 years,
he credits Delphi with helping him
to avoid the traditional male mid-
life crisis. He may be reached at
dbaer@speartechnologies.com

	Whereabouts IUnknown
	Don’t Count On It
	GUID Riddance!
	Naughty, Naughty
	Interfacing Reality
	Service With A Smile
	The Client
	Wrapping Up

